
of
e

-
on
er

n
-

al
-

e
-

el-
d,
f

-
ct
Automatic Order Reduction of
Thermo-Electric Models for MEMS: Arnoldi versus Guyan

Abstract

In this paper we present an automatic order reduction
of a linear thermo-electric model describing a novel type
of micropropulsion device. Model order reduction is
essential to achieve easily to evaluate, yet accurate mac-
romodel of the device, and is needed for simulating both
the microthruster array and its driving circuitry. We
present numerical simulation results of the full finite ele-
ment model and the different reduced order models that
describe the transient thermo-electric behaviour of the
device. For the first time the advantages of an Arnoldi-
algorithm-based model order reduction over a commer-
cially available reduced order modeling after Guyan are
shown.

1. Introduction
A new class of high energy MEMS actuators integrates
solid fuel with three silicon micromachined wafers [1]. It
delivers either an impulse-bit thrust or pressure waves
within a sub millimeter volume of silicon, by producing a
high amount of energy from an ignitable substance con-
tained within the microsystem. The microthruster fuel is
ignited by passing an electric current through a polysili-
con resistor embedded in a dielectric membrane, as
shown in Fig. 1. After the ignition phase, sustained com-
bustion takes place and forms a high-pressure, high-tem-
perature gas mixture. Under the pressure of the gas the
membrane ruptures, and an impulse is imparted to the
carrier frame as the gas escapes from the tank.
The present work considers the initial heating phase of
the fuel, right up to the onset of ignition, described
through the following equations:

(1)

where is the thermal conductivity, is the specific
heat capacity, is the mass density, is the tempera-
ture distribution, Q is the heat generation,j is the electric
current density vector and is the specific electric con-
ductivity.
We use a two dimensional axi-symmetric model, which
after finite element (FE) based spatial discretization of

the governing equations (1) results in a linear system
about 1000 ordinary differential equations-ODEs of th
form:

(2)

where are the global heat conductivity
and heat capacity matrix, are the tem
perature (output) and load vector, and n is the dimensi
of the system. The electric current I(t) through the heat
with electric resistivity R is the input to the system.
As the above number of equations n is too large for a
efficient system simulation of a complete array of micro
thrusters and its driving circuitry, e.g., using behavior
simulators such as SABER or ELDO or a circuit simula
tor such as SPICE, a reduced order model:

(3)

with the dimension r has been developed. Th
equation (3) was obtained by using two different tech
niques: a commercially available, reduced order mod
ing after Guyan [2], and an order reduction metho
based on the Arnoldi algorithm [3]. The comparison o
both of them is presented below.

2. Model Order Reduction via Guyan
The large dimension of (2) could be reduced by the elim
ination of internal nodes i. e., those which do not conne
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Fig. 1 Microthruster Structure.
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to external circuitry. For steady-state problems ( )
it is possible to decompose the linear system into termi-
nal and internal equations, by splitting the matrix K into
four blocks:

(4)

with the index sets e and i ranging over all external and
internal nodes respectively. It is now possible to eliminate
the equations for the non-terminal nodes by means of lin-
ear algebra operations (e.g., the Schur complement) [4],
to get the heat conductivity matrix and the load vector of
the reduced system:

(5)

The commercial FE solver ANSYS offers the possibility
of reduced order modeling also for the transient problems
of the form (2). The computation of and is
done as in (5) and the reduced heat capacity matrix is
given through:

(6)

which is analog to the computation of the reduced mass
matrix for structural dynamics, as proposed by Guyan
[5]. It is now possible to expand the terminal degree of
freedom (DOF) values to gain the complete temperature
distribution of the device using again the equation (4) for
the steady-state:

(7)

3. Model Order Reduction via Arnoldi
The basic idea behind the Arnoldi order reduction algo-
rithm is to write down the algebraic relation between the
input and the output of the linear system (2) in the fre-
quency domain using a Taylor series in the Laplace vari-
able :

(8)

where is called the ith
moment, and then to find a much lower order system
whose transfer function has the same moments
as  up to the degree r.
The explicit computation of the moments is however cir-
cumvented. Instead, a Krylov subspace of the dimension
r:

(9)

is used, and through the computation of an orthogon
basis for this subspace, the matrices and , a
the load vector of the reduced system are compute
All the inputs and outputs of the Arnoldi algorithm are
shown in Fig. 2.

The orthogonal basis for the Krylov subspace (9) is com
puted iteratively and is preserved within a matrix [V]. [H
is an upper Heisenberg matrix. The property of the Kr
lov subspace (9) is such that the first r moments

and match, which is exactly what we
want.

4. Results
An equation system of 1071 ODEs was reduced to
ODEs using each of the two presented algorithms (F
3). Master degrees of freedom (external nodes) need
for Guyan algorithm, were chosen automatically b
ANSYS5.7. A maximal relative error by the Arnoldi-
based reduction was 0.5%, whereas this error by Guya
based reduced order modeling ascended to over 64%.

A large error by the Guyan algorithm based reduction
mostly due to the transient heating phase, and vanis
within the steady-state response according to equatio
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Fig. 2 Model reduction by Arnoldi process.

Fig. 3 Solution of the full system (dashed) and of the 20th
order reduced system for a single node (node 1 in Fig.
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(4) and (5). The approximation error for the reduced heat
capacity matrix (6) decreases as the order r of the reduced
system grows (Fig. 4). A maximal relative error between
the full-scale solution and the reduced solution of the
order 200 still amounts to 6%.

The transfer function of the full and reduced order 20
model (computed via Arnoldi) is shown in Fig. 5. Excel-
lent agreement between both of them in the low-fre-
quency domain (f < 10 kHz) corresponds to moment
matching of order 20 (provided by the reduction algo-
rithm) and is sufficient for the microthruster device.

For this case of the thermo-electric model, a simple Sin-
gle-Input-Single-Output (SISO) original setup for the
Arnoldi algorithm was sufficient to approximate not only
a single output response (Fig. 3) but also the transient
thermal response in all other nodes of the microthruster.
Fig. 6 shows that a maximal mean relative difference for
all the nodes between the full-scale and the recovered
model (out of the reduced order 20 model) amounts only
0.14%. Hence it was possible, after the simulation of the
reduced order 20 model, to recover the solution for all
1071 nodes.

5. Discussion
Both algorithms presented offer the possibility for th
automatic order reduction of ODE systems. It has be
shown though that for transient thermo-electric problem
the Arnoldi-based reduction boasts a much smaller er
for the same order of the reduced system than the Guy
method. This is due to the fact that reduced order mod
ing after Guyan makes an attempt to generalize equat
(4) for a steady-state response to the transient probl
using a coordinate transformation  or:

(10)

This leads to exact matrix condensation for the heat co
ductivity matrix, but an approximated condensation fo
the heat capacity matrix.
Arnoldi-based reduction starts with moment matching fo
the transient problem as it is, and also amounts to a co
dinate transformation of the form:

(11)

where is a transformation error, and i
gained directly as output of Arnoldi algorithm. It has
been shown that for our case of the thermo-electr
model, by reduction from 1071 to 20 counts .

A further big advantage of the Arnoldi algorithm is its
iterative nature: whereas the Guyan algorithm deman
expensive matrix operations for the equations (5) and (
only vector matrix multiplications are needed in eac
iterative step of the Arnoldi orthogonalisation procedur
Finally, the fact that no master degrees of freedom ne
to be chosen by the Arnoldi algorithm contributes to it
convenience.
Currently, a software package is being developed whi
generates linear reduced-order models directly fro
ANSYS data files that contain more than 10 000 degre
of freedom. From the three dimensional geometry a
knowledge of the governing PDE of the model it forms
netlist suitable for use in the behavioral simulato
SABER (Fig. 7).

Fig. 4 Solution of the full system (dashed) and of the dif-
ferent order reduced systems for a single node (node 1 in
Fig. 1), using Guyan reduction.

Fig. 5 Single node transfer function of the full system
(dashed) and of the reduced system (full) corresponding to
the node 1 in Fig. 1 for Arnoldi-based reduction.
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