MONITORING FLASH EEPROM RELIABILITY BY EQUIVALENT CELL ANALYSIS

D. Ielmini, A. S. Spinelli1, A. L. Lacaita, M. Gubello and M. J. van Duuren2

DEI, Politecnico di Milano, Milano, Italy
1Università degli Studi dell’Insubria, Como, Italy
2Philips Research Leuven, Leuven, Belgium
Outline

- Introduction
- Equivalent-cell (EC) technique
- Comparative study
- EC applications
- Leakage mechanisms
- Conclusions
Introduction

• Reliability analysis requires a statistical study of all the cells
• EC technique allows for fast statistical characterization of the array
• EC accuracy has not been demonstrated so far
Data retention experiment: V_T are monitored for increasing time under accelerating gate bias.
Basic assumption: any cell maintains its position within the V_T cumulative distribution
• The complete array can be described by as few as 50-100 ECs
• Large advantage in computational time and memory consumption
EC and single cells

Real cells do not conserve their position within the cumulative probability!
Comparative study

• EC technique cannot be used for describing single-cell behavior
• Are parameter distributions conserved? ⇒ Need for a comparative study

- Data retention characterization for Flash EEPROM arrays with $t_{ox} = 5-8$nm
- Real-cell and EC analysis
- Comparison between SILC distributions
SILC distribution ($t_{ox}=8\text{nm}$)

Good agreement between the EC results and real distributions for any V_{FG}
Gate-bias dependence

The accuracy of EC method does not depend on experimental conditions
SILC distribution (\(t_{\text{ox}}=5\text{nm}\))

The accuracy of EC method does not depend on sample parameters
Parameter B

B = slope of the I-V on the Fowler-Nordheim plot
B distribution

Large accuracy for characterizing parameter B
EC applications

• EC technique yields the SILC distribution, which is a universal monitor allowing for reliability comparison as a function of:
 – Product architecture (e.g. NOR vs. NAND)
 – Cell parameters (e.g. α_G, equilibrium V_T)
 – Oxidation technology (e.g. dry, wet, nitrided)
 – Tunnel-oxide thickness (aided by a model accounting for the t_{ox} dependence of SILC)
Leakage mechanisms

Kinks appear in distributions of both current and B: separation between one-trap and 2-trap leakage
Thicker oxides

No kinks in current distribution \Rightarrow the B distribution is most accurate for separating SILC mechanisms (data from D. Ielmini et al., IEDM Tech Dig. 2001)
Conclusions

• EC method provides a fast technique for reliability assessment
• The accuracy of the EC technique has been demonstrated
• EC can be used for:
 – Reliability comparison between different technologies, architecture, thickness, etc.
 – Accurate monitor of different leakage mechanisms