Future Trends in Intelligent Interface Technologies for 42V Battery Automotive Applications

AMI Semiconductor Belgium BVBA
(1)ELIS-TFCG, University of Gent, Belgium
Overview

- Towards the 42V powernet
- Technology description
- Device performance
 - Vertical nDMOS
 - HV ESD protection structures
 - Flash EEPROM
- Ongoing development
- Conclusions
Towards the 42 V powernet

- No Charge Pump

- With 12V Charge Pump

42 V 50 V 58 V 68 V 70 V 80 V

Nominal Operating voltage

Maximum Operating voltage full lifetime (25y)

Maximum dynamic overvoltage (<1h)

ESD
Towards the 42V powernet

- Gate count increase from 5K to 30K
- OTP for calibration
- Flash EEPROM (32K to 256Kbytes)
- Robustness (T, HC, C/UIS, …)
- Increased ESD levels: min 4 kV HBM
- …
Focus on DMOS
I3T80 Technology

Basic I3T80

Optional Modules

- p-substrate

- HV Buried Layer Module
 - 2 masks: BLN-BLP

- n-epi

- Sinker module:
 - 2 masks: Nsink-Psink

- Pdrift module:
 - 1 mask

- CO35D-QLM: 18 litho steps + Analogue options

- Nresurf Layer
 - 1 mask

- Flash EEPROM

- Pbod module:
 - 1 mask

- Power metal
Vertical nDMOS

Graph showing the relationship between the number of gates and R_{dsonA} (mΩ mm2), with different dose levels indicated by different symbols.

- Dose 1x
- Dose 2x
- Dose 3x
- Dose 4x
- Dose 5x
- Dose 2x Opt
DMOS Benchmarking

Ron (mOhm*mm²) vs. Vbd (V)

- l3t80, Vgmax=3.3V
- ref [3], Vgmax=3.3V
- ref [4], Vgmax=9.0V
- ref [5], Vgmax=12.0V
ESD protection structures

I3T80 - automotive

- Operating Voltage Range
- Overvoltage range
- Breakdown

Current

Voltage

Supply
IO

Charge pump

AMI Semiconductor
ESD protection structures

• Experimental TLP results on HV protection structures

<table>
<thead>
<tr>
<th>Applic</th>
<th>Vleak (V)</th>
<th>Vtrig (V)</th>
<th>It1 (µA/µm)</th>
<th>It2 (mA/µm)</th>
<th>Vhold (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply</td>
<td>67</td>
<td>70</td>
<td>12.5</td>
<td>22</td>
<td>~46</td>
</tr>
<tr>
<td>IO</td>
<td>67</td>
<td>69</td>
<td>12.5</td>
<td>22</td>
<td>21</td>
</tr>
<tr>
<td>CP</td>
<td>71</td>
<td>74</td>
<td>12.5</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>VDMOS</td>
<td>depending on Vgs</td>
<td>38</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDMOS</td>
<td>depending on Vgs</td>
<td><8</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• In addition, ESD protection structures for LV CMOS, OTP and Flash EEPROM drivers (~15V) are available.
ESD protection structures

![Graph showing ESD protection structures](image-url)
Flash EEPROM

- Embedded Flash based on the HIMOS® cell. Cell area of 3.8 \(\mu m^2 \). Only 3 (!) additional masks are needed.
 - Programming: Source side hot electron injection: 10 \(\mu s \)
 - Erase: Fowler-Nordheim injection into the drain: 0.5 s
 - Reading: 30 ns

![Flash EEPROM Diagram]
On-going developments

- Adding more devices to the library
 - Optimised NPN
 - Optimisation of Pbody module (±10% reduction in Ron).
 - Optimised 40-50-60V DMOS devices
 - nDMOS : Ron < 75 mΩ*mm²
 - pDMOS : Ron < 160 mΩ*mm²
 - 20-30V n/pDMOS transistors for 12/42V dual battery
 - 80V resurf nDMOS for LS applications : Ron < 80 mΩ*mm²

- Development of a new spin-off I3T technology dedicated for peripherals : I3T50
Conclusions

- I3T80: third generation Intelligent Interface Technology for future 42V battery automotive applications
 - Cheap and flexible (min. 5 add. masks, modular approach)
 - Floating logic (up to 80V)
 - Competitive DMOS up to 80V, using only the 7 nm gateox.
 - Bipolar devices, HV floating diode, Si bulk Zener diodes, …
 - A broad array of passive components
 - A wide variation of HV ESD protection structures
 - OTP at no extra cost
 - Flash EEPROM at the expense of only three extra masks