Through-Wafer Copper Electroplating for RF Silicon Technology

N.T. Nguyen, K.T. Ng, E. Boellaard, N.P. Pham, G. Craciun, P.M. Sarro, and J.N. Burghartz

DIMES – TU Delft, Netherlands
Content

- Introduction
- Experiments
- Results & Discussion
- Conclusions
Introduction

Through-wafer vertical vias are essential for:

- Advanced Si-RF devices
- 3-D integrated circuits
- 3-D sensor packaging
Novel via formation technology

a. Membrane and via formation
b. Cu evaporation
c. Backside lithography & plating
d. Bottom-up Cu electroplating
e. Frontside Cu evap. & plating
f. Cu wet etching
Via blocking effect

Cu evaporation

Cu source

10^{-6} mbar

T^0

Cu

Cu sputtering

Si

10^{-2} mbar

Cu target

Cu

Ar
Via formation technology

SEM image of a via bottom after copper evaporation

SEM image of a via bottom after the first copper electroplating.

SEM image of a 20µm x 20µm via after the bottom-up copper electroplating
Results – dry etching

Membrane: 25 – 150 µm thick
Vias: circles & squares (5 – 50 µm)
Results – via formation

SEM image of a 5 µm slit (wafer front side) after bottom-up copper plating.

SEM image of randomly (left) and regularly (right) distributed 20x20 µm² vias (wafer front side) after bottom-up copper plating.
Results – device formation

SEM image of a Cu inductor at the wafer backside

Optical image of a cross-talk isolation test structure (wafer front side) after final Cu etching step.
Results – resistance measurements

\[\rho = 2.5 \times 10^{-5} \, \Omega \text{cm} \]

\[R_{\text{total}} = 2R + 2R_1 + R_2 \]

(L varies)

SEM image of test structures for electrical characterization of through-wafer Cu plugs (wafer front side)
Conclusions

- New through-wafer Cu electroplating technique developed
- IC compatible post-process approach developed
- Through-wafer Cu plugs and novel RF devices realized successfully
- Via resistivity is very low
Acknowledgements

- DIMES clean-room staff
- EU project IST-199-10236:
 Design and Construction of Elements of a Hybrid Molecular/Electronic Retina-Cortex Structure (CORTEX)

Thank you !!!