

Impact of Deep N-well Implantation on Substrate Noise Coupling and RF Transistor Performance for Systems-on-a-Chip Integration

Authors : K. W. Chew, J. Zhang, K. Shao, W. B. Loh and S-. F. Chu

Presented by K. W. Chew

Outline

- 1. Introduction
- 2. Deep Nwell Process Overview
- 3. Substrate Coupling Test Structures
- 4.S21 Isolation
- 5. Effect on RF Transistor Performance
- 6. Conclusions

Introduction

Source : IEEE Journal of Solid-State Circuits, Vol. 33, No. 3, pp. 314-323, Mar. 1998

Deep N-well Process Overview

STI formation

Deep n-well implant

N-well formation

P-well formation

Channel implants

Gate insulator and gate electrode

Pocket I/I + LDD I/I

Sidewall spacer and S/D I/I

Co salicidation

BEOL

Deep N-well Process Overview

Transistor Cross-Sectional View

Deep N-well RF Isolation Test Structures

(a) Typical Layout*

(b) More Complex Layout*

* The authors would like to acknowledge Institute of Microelectronics (Singapore) VLSI department for the test structure layouts

Diode-Type Substrate Coupling Structure in Deep N-well

Effect of Different Body Biasing Techniques on RF Isolation for P⁺ Noise Generators

rtered miconductor manufacturing

Effect of Different Body Biasing Techniques on RF Isolation for N⁺ Noise Generators

Effect of Different Body Biasing Techniques on RF Isolation for N⁺ Noise Generators

] r manufacturing

Effect of Deep Nwell Dosage on RF Isolation for P⁺ Noise Generators

Intered

Thin-Gate Oxide MOSFETs in Deep N-well DC Characteristics

Thick-Gate Oxide MOSFETs in Deep N-well DC Characteristics

Effect of Deep Nwell on the RF Transistor AC Characteristics Extracted from S-parameters

Effect of Deep Nwell on the RF Transistor AC Characteristics Extracted from CV Measurements

NPW1_40.CV P/A=6.00E-05/2.25E-10 T=-40.0C

NPW1 125.CV P/A=6.00E-05/2.25E-10 T=125.0C

N⁺/P-well Junction Capacitance Area : 225 μm² Perimeter : 60 μm Frequency : 100 KHz Dot: with Deep Nwell Line: without Deep Nwell

NPW1_25.CV P/A=6.00E-05/2.25E-10 T=25.0C

Comparison of RF Transistor High Frequency Characteristics with and without Deep N-well

Red : without Deep N-well Blue : with Deep N-well Plot Compare Dif 1/spar all/S21 W1 W2 (On) ff Splits 20 30/transfer noise all 1/spar a S21 S11 S12 1.0 200.0 ≥∵์ ด 2.0 100.0 0.0 -0.e 5 -mi -2.0 0.2 -100.0 2.0 30_Control/sp -0.5 -4.2 -200 O -4.0 -2.0 0.0 2.0 -100.0 -a.a 100.0 200.0 -200.0 -1.6 Unilateral Gain S22 REAL [E-3] ₽ freq 1.1.1.1.1.1.1 1.1.1.1.111 zíø Й 60.0 W1_28/spar 50.0 a... 50.0 mag (M1 40.0 m.22 40.0 30.0 30.0 20.0 2.0 20.0 - 1. P 3P Con 1.1.1.1 10.0 10.0 30 Cont 10 10 10 11 10 10 10 10 10 10 10 10 10 freq [LOG] freq [LOG]

M1_28/sp3

Þ

deemb

ŝ

Ř

Effect of Deep N-well on RF Transistor Figures-of-Merit

Red : without Deep N-well

Blue : with Deep N-well

Comparison of RF Transistor 1/f Noise Characteristics with and without Deep N-well

Vertical NPN Bipolar from the 0.18 μm Deep N-well Technology

Conclusions

- 1. Deep n-well is effective in isolating substrate coupling for NMOSFET
- 2. Maximum of 35 dB isolation at 100 MHz obtained with deep n-well plus grounded nwell and p⁺ guard ring, using deep n-well dose and implant energy of P1E13 @ 900 KeV
- 3. Deep n-well process with optimum dosage and energy will not impact the dc, ac, rf, and noise performance
- 4. Vertical NPN bipolar with beta of 14 can be obtained from the deep n-well technology

